Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 51(4): 978-990, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38049658

RESUMEN

PURPOSE: A same-day PET imaging agent capable of measuring PD-L1 status in tumors is an important tool for optimizing PD-1 and PD-L1 treatments. Herein we describe the discovery and evaluation of a novel, fluorine-18 labeled macrocyclic peptide-based PET ligand for imaging PD-L1. METHODS: [18F]BMS-986229 was synthesized via copper mediated click-chemistry to yield a PD-L1 PET ligand with picomolar affinity and was tested as an in-vivo tool for assessing PD-L1 expression. RESULTS: Autoradiography showed an 8:1 binding ratio in L2987 (PD-L1 (+)) vs. HT-29 (PD-L1 (-)) tumor tissues, with >90% specific binding. Specific radioligand binding (>90%) was observed in human non-small-cell lung cancer (NSCLC) and cynomolgus monkey spleen tissues. Images of PD-L1 (+) tissues in primates were characterized by high signal-to-noise, with low background signal in non-expressing tissues. PET imaging enabled clear visualization of PD-L1 expression in a murine model in vivo, with 5-fold higher uptake in L2987 (PD-L1 (+)) than in control HT-29 (PD-L1 (-)) tumors. Moreover, this imaging agent was used to measure target engagement of PD-L1 inhibitors (peptide or mAb), in PD-L1 (+) tumors as high as 97%. CONCLUSION: A novel 18F-labeled macrocyclic peptide radioligand was developed for PET imaging of PD-L1 expressing tissues that demonstrated several advantages within a nonhuman primate model when compared directly to adnectin- or mAb-based ligands. Clinical studies are currently evaluating [18F]BMS-986229 to measure PD-L1 expression in tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Dominio de Fibronectina del Tipo III , Radioisótopos de Flúor , Neoplasias Pulmonares , Proteínas Recombinantes , Humanos , Ratones , Animales , Antígeno B7-H1/metabolismo , Ligandos , Macaca fascicularis/metabolismo , Tomografía de Emisión de Positrones/métodos , Péptidos/química
2.
Mol Imaging Biol ; 26(2): 301-309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38123744

RESUMEN

PURPOSE: In cancer immunotherapy, the blockade of the interaction between programmed death-1 and its ligand (PD-1:PD-L1) has proven to be one of the most promising strategies. However, as mechanisms of resistance to PD-1/PD-L1 inhibition include variability in tumor cell PD-L1 expression in addition to standard tumor biopsy PD-L1 immunohistochemistry (IHC), a comprehensive and quantitative approach for measuring PD-L1 expression is required. Herein, we report the development and characterization of an 18F-PD-L1-binding macrocyclic peptide as a PET tracer for the comprehensive evaluation of tumor PD-L1 expression in cancer patients. PROCEDURES: 18F-BMS-986229 was characterized for PD-L1 expression assessment by autoradiography or PET imaging. 18F-BMS-986229 was utilized to evaluate tumor PD-L1 target engagement in competition with a macrocyclic peptide inhibitor of PD-L1 (BMS-986189) over a range of doses using PET imaging. A whole-body radiation dosimetry study of 18F-BMS-986229 in healthy non-human primates (NHPs) was performed. RESULTS: In vitro autoradiography showed an 8:1 binding ratio in L2987(PD-L1 +) vs. HT-29 (PD-L1-) tumors, more than 90% of which could be blocked with 1 nM of BMS-986189. Ex vivo autoradiography showed that 18F-BMS-986229 detection was penetrant over a series of sections spanning the entire L2987 tumor. In vivo PET imaging in mice demonstrated a 5:1 tracer uptake ratio (at 90-100 min after tracer administration) in L2987 vs. HT-29 tumors and demonstrated 83%-93% specific binding of BMS-986189 within those dose ranges. In a healthy NHP dosimetry study, the resultant whole-body effective dose was 0.025 mSv/MBq. CONCLUSION: 18F-BMS-986229 has been preclinically characterized and exhibits high target specificity, low background uptake, and a short blood half-life supportive of same day imaging in the clinic. As the PET tracer, 18F-BMS-986229 shows promise in the quantification of PD-L1 expression, and its use in monitoring longitudinal changes in patients may provide insights into PD-1:PD-L1 immuno-therapy treatment outcomes.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1 , Tomografía de Emisión de Positrones/métodos , Radiometría , Péptidos
3.
J Magn Reson Imaging ; 56(3): 712-724, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35092323

RESUMEN

BACKGROUND: Treatments for nonalcoholic steatohepatitis (NASH) are urgently needed. Hepatic fat fraction and shear stiffness quantified by magnetic resonance imaging (MRI-HFF) and magnetic resonance elastography (MRE-SS), respectively, are biomarkers for hepatic steatosis and fibrosis. PURPOSE: This study assessed the longitudinal effects of fibroblast growth factor 21 variant (polyethylene glycol [PEG]-FGF21v) on MRI-HFF and MRE-SS in a NASH mouse model. STUDY TYPE: Preclinical. ANIMAL MODEL: This study included a choline-deficient, amino acid-defined, high-fat diet (CDAHFD) model and 6-week-old, male C57BL/6J mice (N = 78). FIELD STRENGTH/SEQUENCE: This study was performed using: 3T: gradient-echo two-point Dixon and spin-echo (SE) echo-planar imaging elastography (200 Hz) and 7T: SE two-point Dixon and SE elastography (200 Hz). ASSESSMENT: MRI and MRE were performed before control diet (CD) or CDAHFD (BD), before PEG-FGF21v dosing (baseline), and after PEG-FGF21v treatment (WK4/8). Regions of interest for MRI-HFF and MRE-SS were delineated by J.L. and H.T. (>5 years of experience each). Fibrosis and steatosis were measured histologically after picrosirius red and H&E staining. Alkaline phosphatase, alanine transaminase, bile acids, and triglycerides (TGs) were measured. STATISTICAL TESTS: Two-tailed Dunnett's tests were used for statistical analysis; untreated CDAHFD or baseline was used for comparisons. Imaging and histology/biochemistry data were determined using Spearman correlations. Bayesian posterior distributions for MRE-SS at WK8, posterior means, and 95% credible intervals were presented. RESULTS: CDAHFD significantly increased baseline MRI-HFF (3T: 21.97% ± 0.29%; 7T: 40.12% ± 0.35%) and MRE-SS (3T: 1.25 ± 0.02; 7T: 1.78 ± 0.06 kPa) vs. CD (3T: 3.45% ± 0.7%; 7T: 12.06% ± 1.4% and 3T: 1.01 ± 0.02; 7T: 0.89 ± 0.06 kPa). At 7T, PEG-FGF21v significantly decreased MRI-HFF (WK4: 28.97% ± 1.22%; WK8: 20.93% ± 1.15%) and MRE-SS (WK4: 1.57 ± 0.04; WK8: 1.36 ± 0.05 kPa) vs. untreated (WK4: 36.36% ± 0.62%; WK8: 30.58% ± 0.81% and WK4: 2.03 ± 0.06; WK8: 2.01 ± 0.04 kPa); 3T trends were similar. WK8 SS posterior mean percent attenuation ratios (RDI ) were -68% (-90%, -44%; 3T) and -64% (-78%, -52%; 7T). MRI-HFF was significantly correlated with H&E (3T, r = 0.93; 7T, r = 0.94) and TGs (both, r = 0.92). DATA CONCLUSIONS: MRI-HFF and MRE-SS showed PEG-FGF21v effects on hepatic steatosis and fibrosis across 3 and 7T, consistent with histological and biochemical data. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Animales , Teorema de Bayes , Modelos Animales de Enfermedad , Diagnóstico por Imagen de Elasticidad/métodos , Factores de Crecimiento de Fibroblastos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Polietilenglicoles
4.
J Psychopharmacol ; 32(2): 146-155, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29378483

RESUMEN

Major depressive disorder is a leading cause of disability globally. Improvements in the efficacy of antidepressant therapy are needed as a high proportion (>40%) of individuals with major depressive disorder fail to respond adequately to current treatments. The non-selective N-methyl-D-aspartate receptor channel blocker, (±)-ketamine, has been reported to produce a rapid and long-lasting antidepressant response in treatment-resistant major depressive disorder patients, which provides a unique opportunity for investigation of mechanisms that mediate its therapeutic effect. Efforts have also focused on the development of selective N-methyl-D-aspartate receptor subtype 2B antagonists which may retain antidepressant activity but have lower potential for dissociative/psychotomimetic effects. In the present study, we examined the central nervous system effects of acute, intravenous administration of (±)-ketamine or the N-methyl-D-aspartate receptor subtype 2B antagonist, traxoprodil, in awake rats using pharmacological magnetic resonance imaging. The study contained five treatment groups: vehicle, 3 mg/kg (±)-ketamine, and three doses of traxoprodil (0.3 mg/kg, 5 mg/kg, and 15 mg/kg). Non-linear model fitting was performed on the temporal hemodynamic pharmacological magnetic resonance imaging data to generate brain activation maps as well as regional responses based on blood oxygen level dependent signal changes for group analysis. Traxoprodil at 5 mg/kg and 15 mg/kg produced a dose-dependent pharmacological magnetic resonance imaging signal in rat forebrain regions with both doses achieving >80% N-methyl-D-aspartate receptor subtype 2B occupancy determined by ex vivo [3H]Ro 25-6981 binding. The middle dose of traxoprodil (5 mg/kg) generated region-specific activations in medial prefrontal cortex, ventral orbital cortex, and anterior cingulate cortex whereas the high dose (15 mg/kg) produced a widespread pharmacological magnetic resonance imaging response in both cortical and subcortical brain regions which was similar to that produced by (±)-ketamine (3 mg/kg, intravenous).


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Ketamina/farmacología , Imagen por Resonancia Magnética/métodos , Piperidinas/farmacología , Animales , Antidepresivos/administración & dosificación , Antidepresivos/farmacología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Trastorno Depresivo Mayor/fisiopatología , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/administración & dosificación , Masculino , Dinámicas no Lineales , Fenoles/farmacología , Piperidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Vigilia
5.
J Nucl Med ; 59(3): 529-535, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29025984

RESUMEN

The programmed death protein (PD-1) and its ligand (PD-L1) play critical roles in a checkpoint pathway cancer cells exploit to evade the immune system. A same-day PET imaging agent for measuring PD-L1 status in primary and metastatic lesions could be important for optimizing drug therapy. Herein, we have evaluated the tumor targeting of an anti-PD-L1 adnectin after 18F-fluorine labeling. Methods: An anti-PD-L1 adnectin was labeled with 18F in 2 steps. This synthesis featured fluorination of a novel prosthetic group, followed by a copper-free click conjugation to a modified adnectin to generate 18F-BMS-986192. 18F-BMS-986192 was evaluated in tumors using in vitro autoradiography and PET with mice bearing bilateral PD-L1-negative (PD-L1(-)) and PD-L1-positive (PD-L1(+)) subcutaneous tumors. 18F-BMS-986192 was evaluated for distribution, binding, and radiation dosimetry in a healthy cynomolgus monkey. Results:18F-BMS-986192 bound to human and cynomolgus PD-L1 with a dissociation constant of less than 35 pM, as measured by surface plasmon resonance. This adnectin was labeled with 18F to yield a PET radioligand for assessing PD-L1 expression in vivo. 18F-BMS-986192 bound to tumor tissues as a function of PD-L1 expression determined by immunohistochemistry. Radioligand binding was blocked in a dose-dependent manner. In vivo PET imaging clearly visualized PD-L1 expression in mice implanted with PD-L1(+), L2987 xenograft tumors. Two hours after dosing, a 3.5-fold-higher uptake (2.41 ± 0.29 vs. 0.82 ± 0.11 percentage injected dose per gram, P < 0.0001) was observed in L2987 than in control HT-29 (PD-L1(-)) tumors. Coadministration of 3 mg/kg ADX_5322_A02 anti-PD-L1 adnectin reduced tumor uptake at 2 h after injection by approximately 70%, whereas HT-29 uptake remained unchanged, demonstrating PD-L1-specific binding. Biodistribution in a nonhuman primate showed binding in the PD-L1-rich spleen, with rapid blood clearance through the kidneys and bladder. Binding in the PD-L1(+) spleen was reduced by coadministration of BMS-986192. Dosimetry estimates indicate that the kidney is the dose-limiting organ, with an estimated human absorbed dose of 2.20E-01 mSv/MBq. Conclusion:18F-BMS-986192 demonstrated the feasibility of noninvasively imaging the PD-L1 status of tumors by small-animal PET studies. Clinical studies with 18F-BMS-986192 are under way to measure PD-L1 expression in human tumors.


Asunto(s)
Antígeno B7-H1/metabolismo , Radioisótopos de Flúor , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Marcaje Isotópico , Ligandos , Macaca fascicularis , Ratones , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Distribución Tisular
6.
Rapid Commun Mass Spectrom ; 19(18): 2643-50, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16124030

RESUMEN

Hydroxyproyl-beta-cyclodextran (HPBCD), methyl cellulose (MC), Tween 80 and PEG400 are commonly used in dosing formulations in pharmacokinetic (PK) studies during the early drug discovery stage. A series of studies was designed to evaluate the potential matrix effects of these dosing vehicles when the samples are assayed by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC/MS/MS). These dosing vehicles were dosed into the rats via either an intravenous (IV) or an oral route (PO) and plasma samples were collected for a 24-h post-dose period. Five test compounds with CLog P values ranging from 0.9 to 5.4 were spiked into the collected rat plasma. After protein precipitation, these samples were analyzed using a generic fast-gradient HPLC/MS/MS method. Three popular mass spectrometers (Thermo-Finnigan Quantum with ESI and APCI, AB-Sciex API 3000 with ESI and APCI, and Waters-Micromass Quattro Ultima with ESI) were used to test these plasma samples. Results indicated that there was no observed matrix effect for all five compounds when 20% HPBCD or 0.4% MC was used as the vehicle in either the IV or the PO route, respectively. In addition, 0.1% Tween 80 dosed either IV or PO caused significant ion suppression (50-80%, compared to results obtained from plasma samples free from vehicles) for compounds that eluted at the beginning of the chromatogram. Also, PEG400 when used in an oral formulation caused significant ion suppression (30-50%) for early eluting compounds. These matrix effects were not only ionization mode (ESI or APCI) dependent, but also source design (Thermo-Finnigan, AB-Sciex or Waters-Micromass) dependent. Overall, the APCI mode proved to be less vulnerable to matrix effects than the ESI mode. Some possible mechanisms of these matrix effects are proposed and simple strategies to avoid these matrix effects are discussed.


Asunto(s)
Artefactos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Relación Dosis-Respuesta a Droga , Masculino , Metilcelulosa , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Proyectos de Investigación , Factores de Tiempo , beta-Ciclodextrinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...